509 research outputs found

    Building on the DEPLOY Legacy: Code Generation and Simulation

    Full text link
    The RODIN, and DEPLOY projects laid solid foundations for further theoretical, and practical (methodological and tooling) advances with Event-B. Our current interest is the co-simulation of cyber-physical systems using Event-B. Using this approach we aim to simulate various features of the environment separately, in order to exercise deployable code. This paper has two contributions, the first is the extension of the code generation work of DEPLOY, where we add the ability to generate code from Event-B state-machine diagrams. The second describes how we may use code, generated from state-machines, to simulate the environment, and simulate concurrently executing state-machines, in a single task. We show how we can instrument the code to guide the simulation, by controlling the relative rate that non-deterministic transitions are traversed in the simulation.Comment: In Proceedings of DS-Event-B 2012: Workshop on the experience of and advances in developing dependable systems in Event-B, in conjunction with ICFEM 2012 - Kyoto, Japan, November 13, 201

    Building on the DEPLOY legacy: code generation and simulation

    No full text
    The RODIN, and DEPLOY projects have laid solid foundations for further theoretical, and practical (methodological and tooling) advances with Event-B; we investigated code generation for embedded, multi-tasking systems. This work describes activities from a follow-on project, ADVANCE; where our interest is co-simulation of cyber-physical systems. We are working to better understand the issues arising in a development when modelling with Event-B, and animating with ProB, in tandem with a multi-simulation strategy. With multi-simulation we aim to simulate various features of the environment separately, in order to exercise the deployable code. This paper has two contributions, the first is the extension of the code generation work of DEPLOY, where we add the ability to generate code from Event-B state-machine diagrams. The second describes how we may use code, generated from state-machines, to simulate the environment, and simulate concurrently executing state-machines, in a single task. We show how we can instrument the code to guide the simulation, by controlling the relative rate that non-deterministic transitions are traversed in the simulation

    Guarded atomic actions and refinement in a system-on-chip development flow: bridging the specification gap with Event-B

    No full text
    Modern System-on-chip (SoC) hardware design puts considerable pressure on existing design and verification flows, languages and tools. The Register Transfer Level (RTL)description, which forms the input for synchronous, logic synthesis-driven design is at too low a level of abstraction for efficient architectural exploration and re-use. The existing methods for taking a high-level paper specification and refining this specification to an implementation that meets its performance criteria is largely manual and error-prone and as RTL descriptions get larger, a systematic design method is necessary to address explicitly the timing issues that arise when applying logic synthesis to such large blocks.Guarded Atomic Actions have been shown to offer a convenient notation for describing microarchitectures that is amenable to formal reasoning and high-level synthesis. Event-B is a language and method that supports the development of specifications with automatic proof and refinement, based on guarded atomic actions. Latency-insensitive design ensures that a design composed of functionally correct components will be independent of communication latency. A method has been developed which uses Event-B for latency-insensitive SoC component and sub-system design which can be combined with high-level, component synthesis to enable architectural exploration and re-use at the specification level and to close the specification gap in the SoC hardware flow

    Formal Modelling, Testing and Verification of HSA Memory Models using Event-B

    Full text link
    The HSA Foundation has produced the HSA Platform System Architecture Specification that goes a long way towards addressing the need for a clear and consistent method for specifying weakly consistent memory. HSA is specified in a natural language which makes it open to multiple ambiguous interpretations and could render bugs in implementations of it in hardware and software. In this paper we present a formal model of HSA which can be used in the development and verification of both concurrent software applications as well as in the development and verification of the HSA-compliant platform itself. We use the Event-B language to build a provably correct hierarchy of models from the most abstract to a detailed refinement of HSA close to implementation level. Our memory models are general in that they represent an arbitrary number of masters, programs and instruction interleavings. We reason about such general models using refinements. Using Rodin tool we are able to model and verify an entire hierarchy of models using proofs to establish that each refinement is correct. We define an automated validation method that allows us to test baseline compliance of the model against a suite of published HSA litmus tests. Once we complete model validation we develop a coverage driven method to extract a richer set of tests from the Event-B model and a user specified coverage model. These tests are used for extensive regression testing of hardware and software systems. Our method of refinement based formal modelling, baseline compliance testing of the model and coverage driven test extraction using the single language of Event-B is a new way to address a key challenge facing the design and verification of multi-core systems.Comment: 9 pages, 10 figure

    Modelling and Refinement in CODA

    Full text link
    This paper provides an overview of the CODA framework for modelling and refinement of component-based embedded systems. CODA is an extension of Event-B and UML-B and is supported by a plug-in for the Rodin toolset. CODA augments Event-B with constructs for component-based modelling including components, communications ports, port connectors, timed communications and timing triggers. Component behaviour is specified through a combination of UML-B state machines and Event-B. CODA communications and timing are given an Event-B semantics through translation rules. Refinement is based on Event-B refinement and allows layered construction of CODA models in a consistent way.Comment: In Proceedings Refine 2013, arXiv:1305.563

    Co-simulation of Event-B and Ptolemy II Models via FMI

    Get PDF
    In the framework of model-based design formal modelling, verification and simulation of safety-critical systems are supported by several methods and tools. Interfacing these tools often becomes challenging for heterogeneous systems. The FMI standard enables integration of different simulation tools through artefacts called Functional Mockup Units (FMU) [1]. The FMI standard is mainly based on the concept of scalability of the simulation as it deals with heterogeneous cyber-physical systems. The combination of discrete behaviour and continuous-time environment is a common case study in hybrid simulation. Moreover, another aspect of the FMI is to enhance the capability of the tools. Thus, a collaborative simulation between the Rodin [2] and Ptolemy [3] is leveraged by both platforms. While Event-B is enhanced by new models of computation of Ptolemy,Ptolemy leverages the expressivity and properties validation (theorem/invariant proofs) implemented by Event-B. The main rationale of the co-simulation between Event-B and Ptolemy relies on the intention of dissimilarity and complementarity of the modelling viewpoints. Event-B provides formal modelling by specifying conditions, actions and properties that manage discrete event behaviour, whereas Ptolemy gives a structural viewpoint in terms of actors, components or functions with relation to concerned behaviour. Thus, the association of Ptolemy and Event-B puts together structural and formal aspects.This paper focuses on the collaborative simulation of models supported by both Ptolemy II and Event-B. The ongoing work consists of the design of a diagrammatic co-simulation surface and its application to a controller case study

    Book Reviews

    Get PDF

    Projected fiducial markers for dynamic content display on guided tours

    Get PDF
    In this paper, we present a novel interaction technique ā€“ combining mobile projection and visible, fiducial marker based information display. We vision it to be suitable for small groups e.g. for narrative playful experiences and guided on places, where physical tags would be disturbing. This interaction technique, where one person (guide) is projecting a marker and other users can read it with their mobile devices, enables in situ information delivery while the guide can control the dynamics of the situation. We present an example use case of using the interaction technique on a guided tour, and a preliminary results from the user evaluatio
    • ā€¦
    corecore